- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fern, Joshua (3)
-
Schulman, Rebecca (3)
-
Gracias, David H. (2)
-
Shi, Ruohong (2)
-
Byrne, Shane R (1)
-
Huang, Qi (1)
-
Jia, Sisi (1)
-
Kengmana, Eli (1)
-
Liu, Yixin (1)
-
Pahapale, Gayatri (1)
-
Schaffter, Samuel W (1)
-
Xiong, Yan (1)
-
Xu, Weinan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fern, Joshua; Shi, Ruohong; Liu, Yixin; Xiong, Yan; Gracias, David H.; Schulman, Rebecca (, Soft Matter)The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.more » « less
-
Shi, Ruohong; Fern, Joshua; Xu, Weinan; Jia, Sisi; Huang, Qi; Pahapale, Gayatri; Schulman, Rebecca; Gracias, David H. (, Small)Abstract Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide‐co‐bis‐acrylamide (Am‐BIS), poly(ethylene glycol) diacrylate (PEGDA), and gelatin‐methacryloyl (GelMA) that swell extensively in response to specific DNA sequences. A common mechanism, a polymerization motor that induces swelling is driven by a cascade of DNA hairpin insertions into hydrogel crosslinks. These multicomponent hydrogels can be photopatterned into distinct shapes, have a broad range of mechanical properties, including tunable shear moduli between 297 and 3888 Pa and enhanced biocompatibility. Human cells adhere to the GelMA‐DNA gels and remain viable during ≈70% volumetric swelling of the gel scaffold induced by DNA sequences. The results demonstrate the generality of sequential DNA hairpin insertion as a mechanism for inducing shape change in multicomponent hydrogels, suggesting widespread applicability of polymerization motor gels in biomaterials science and engineering.more » « less
An official website of the United States government
